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Abstract

The behavior of a drop cloud in thermocapillary motion in zero gravity is examined for both mono-dispersed and poly-dispersed
cases. Numerical simulations of the thermocapillary motion of two- and three-dimensional fully deformable light drops are presented.
The Navier–Stokes equations coupled with the energy conservation equation are solved by a front-tracking/finite-difference method. The
material properties of the drop fluid and the ambient fluid are different, and the interfacial tension depends on the temperature. At mod-
erate Reynolds (Re) and Marangoni (Ma) numbers, the results show that drops form layers nearly perpendicular to the temperature
gradient.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that drops suspended in a fluid with a
temperature field move in the direction of the temperature
gradient due to thermocapillary forces. Interfacial tension
generally decreases with increasing temperature and a
non-uniform temperature field in the ambient fluid gener-
ates an interfacial tension gradient at the fluid interface
that, in turn, induces shear stresses acting on the outer fluid
by viscous forces, and thus inducing a motion of the drop
in the direction of the temperature gradient. This phenom-
enon is known as the thermocapillary migration of drops
and it can play an important role in material processing
under the microgravity condition in the space as well as
in many other scientific and engineering applications.

Following the pioneering work of Young et al. [14] who
found an analytical expression for the terminal velocity of a
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single spherical drop in the creeping flow limit, the behav-
ior of a single fluid particle in a temperature gradient has
been extensively studied and been reasonably well under-
stood. However, it is frequently necessary to deal with a
large number of drops and their collective behavior may
differ substantially from the thermocapillary migration of
a single isolated drop. The thermocapillary motion of
two drops and their interactions were first examined ana-
lytically by Anderson [1] in the limit of zero Reynolds
and Marangoni numbers. Anderson [1] showed that the
collective behavior of a droplet suspension is considerably
different from that of a single isolated drop. This result was
then confirmed by Keh and Chen [3] who studied axisym-
metric thermocapillary migration of two spherical droplets
in a creeping flow regime. Keh and Chen [4] also investi-
gated the axisymmetric thermocapillary motion of a chain
of spherical droplets in a quasi-steady state limit of con-
servation of energy and momentum using a combined ana-
lytical–numerical method. The interaction of dispersed
spherical drops in thermocapillary motion was examined
by Zhang and Davis [16] in creeping flow conditions
with a trajectory method. Keh and Chen [5] studied the
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Nomenclature

a initial drop radius (m)
av average drop radius (m)
cp specific heat capacity (J/kg K)
c�p ratio of heat capacity ðcpi

=cpo
Þ

i subscript denoting drop fluid
k heat conduction coefficient (W/m K)
k* ratio of heat conduction coefficient (ki/ko)
Ma Marangoni number (Ura/ao)
o subscript denoting ambient fluid
Re Reynolds number (Ura/mo)
To reference temperature (K)
tr reference time scale (a/Ur)
Ur reference velocity (rTaj$T1j/lo)
Urv average reference velocity (m/s)

We Weber number (qoaU2
r=ro)

a thermal diffusivity (k/qcp)
c deformation
� deformation parameter
l dynamic viscosity (N s/m2)
l* viscosity ratio (li/lo)
m kinematic viscosity (m2/s)
q density (kg/m3)
q* density ratio (qi/qo)
r interfacial tension coefficient (N/m)
ro interfacial tension coefficient at To

rT proportionality coefficient (�dr/dT)
$T1 temperature gradient in undisturbed ambient

fluid
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interaction of many droplets in the limit of creeping ther-
mocapillary motion and found that the terminal velocity
of gas bubbles is independent of each other if they are all
equal in size in the limiting case of zero Reynolds and
Marangoni numbers. Nas and Tryggvason [9] studied the
interaction of two droplets at moderate Reynolds and
Marangoni numbers and showed that, in contrast with
the results found in the creeping flow limit, the terminal
velocity of droplets can be strongly affected by the presence
of other droplets depending on the separation distance
between them. The reader is referred to the review papers
by Subramanian [10] and by Wozniak et al. [15] and to a
recent book by Subramanian and Balasubramaniam [11]
for a detailed discussion of analytical, numerical and exper-
imental methods about the thermocapillary motion of
drops in reduced gravity including a more complete list
of literature on the subject.

The investigations of interactions of drops discussed
above have mostly been limited to zero Reynolds and
Marangoni numbers. In many engineering applications
where thermocapillary forces are dominant, it is likely that
many drops are present and heat and mass convections are
important, i.e., Reynolds and Marangoni numbers are non-
zero. It is therefore critical to understand the overall behav-
ior of large drop systems with either mono-dispersed or
poly-dispersed cases including the effect of non-zero
Reynolds and Marangoni numbers. In the present work,
numerical simulation of equal size (mono-dispersed) drops
as well as unequal size (poly-dispersed) drops in two and
three dimensions are presented for non-zero values of Rey-
nolds and Marangoni numbers. It is found that the drops
align themselves nearly perpendicular to the temperature
gradient. This might be an important result since it suggests
that the formation of drop layers may result in dislocations
inside the solidified material produced in microgravity
environment.
2. Formulation and numerical method

The governing equations are described in this section
in the framework of the front-tracking method. In this
method, the flow equations are written for the entire flow
field and different phases are treated as a single fluid with
variable material properties. A detailed description and
numerical properties of the front-tracking/finite-difference
method can be found in the review paper by Tryggvason
et al. [12] where some results for the thermocapillary migra-
tion of drops are also presented. In addition, the formu-
lated governing equations and the numerical solution
method employed here for the computations of thermocap-
illary migration of drops are the same as described by Nas
and Tryggvason [9]. Some validation results and an exten-
sive computational study of the thermocapillary motion of
a single drop and two drop interactions can also be found
in Nas and Tryggvason [9].

2.1. Governing equations

As mentioned above, it is possible to write the Navier–
Stokes equations as a single set of equations for the whole
domain as long as the jumps in fluid properties are cor-
rectly accounted for and interfacial tension is included.
The Navier–Stokes equations in conservative form are
given by

oqu

ot
þr � ðquuÞ

¼ �rp þr � lðruþruTÞ þ
Z

dbðx� xfÞ
o

os
ðrtÞds;

ð1Þ
where the last term is the interfacial tension acting on the
interface, included as a body force by representing it as a
delta function. Here u is the velocity field, p is the pressure,
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Fig. 1. Schematic of the validation test problem.
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q is the density, l is the viscosity, r is the interfacial ten-
sion, t is a unit tangent vector, s is the arc length along
the interface or along the edge of the surface element, xf

is the position of the interface, and the integral is over
the interface separating the fluids. db is a two dimensional
(b = 2) or three dimensional (b = 3) delta function, con-
structed by a repeated multiplication of one-dimensional
d functions.

The conservation of energy can be formulated as

qcp
oT
ot
þr � uT

� �
¼ r � ðkrT Þ; ð2Þ

where T is the temperature and k and cp are the coefficients
of heat conduction and heat capacity, respectively, and
heat generation is assumed to be negligible. Both fluids
are immiscible and the material properties are constant in
each fluid. Therefore, the equations of state for density,
viscosity, heat capacity, and heat conduction are

Dq
Dt
¼ 0;

Dl
Dt
¼ 0;

Dk
Dt
¼ 0;

Dcp

Dt
¼ 0; ð3Þ

where D
Dt ¼ o

ot þ u � r is the substantial derivative. The
incompressibility constraint gives a solenoidal velocity field

r � u ¼ 0. ð4Þ

A non-separable elliptic equation for the pressure is found
by combining the momentum equation and the incom-
pressibility condition, and is solved numerically together
with the momentum and energy equations.

2.2. Numerical method

The numerical technique employed here is the front-
tracking/finite-difference method developed by Unverdi
and Tryggvason [13]. The flow equations are solved using
a fixed, regular, staggered grid. The momentum equations
are discretized using a conservative, second-order central
difference scheme for the spatial variables and an explicit
predictor–corrector, second-order projection scheme is
used for the time-integration. The interface is represented
by discrete computational points or triangular elements
that are moved by the fluid velocity interpolated from the
fixed grid. These points or elements are connected to form
a front that is used to keep the density and viscosity strat-
ification sharp, and to calculate the interfacial tension. The
pressure equation is non-separable since the density varies
and a multigrid method is used to solve it efficiently.

In two-dimensional simulations, the net interfacial ten-
sion force on each element is found directly by

Fs ¼
I

elem

o

os
ðrtÞds ¼ ðrtÞ2 � ðrtÞ1; ð5Þ

where the unit tangent vector t is computed by fitting a
Legendre polynomial to the end-points of each element
and the end points of the adjacent elements. For a three
dimensional flow, this force is found by
Fs ¼
Z
rS

rt� ndS. ð6Þ

Here t is a unit tangent vector along the edge of the trian-
gular surface element, and n is a unit normal vector to the
same triangular surface element. The integral is performed
over the surface of the front element. This formulation has
some advantages as discussed by Tryggvason et al. [12].

An indicator function is defined such that it is unity
inside the droplet and zero outside. Based on the locations
of the interface marker points, unit magnitude jumps are
distributed in a conservative manner on the computational
grid points near the interface and are integrated to compute
the indicator function everywhere. This procedure involves
solution of a separable Poisson equation and yields a
smooth transition of the indicator function across the inter-
face. Once the indicator function distribution is deter-
mined, the fluid properties such as viscosity and density
are set as a function of the indicator function.

The readers are referred to the references by Tryggvason
et al. [12] and by Nas and Tryggvason [9] for a detailed
description of the numerical method.

2.3. Validation test

The accuracy of the method is tested for a simple flow in
this section. For this purpose, a strip of one fluid is laid
down in a channel and is surrounded by an ambient fluid.
A schematic is shown in Fig. 1. The domain is wall
bounded in the vertical direction and periodic in the hori-
zontal direction. There are two interfaces at the top and
the bottom of the symmetry axis x. The density of the mid-
dle layer is equal to the outer one, but its viscosity is half of
the outer one. It is assumed that the temperature field is
fully developed and increases linearly with x. Since the
interfacial tension is a function of temperature, the only
force acting on each interface is the interfacial tension gra-
dient along the interface, rx. The governing equation for
this flow can be written as
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d

dy
l

du
dy

� �
þ rxdðyÞ ¼ 0; ð7Þ

where u is the x component of the velocity. The solution of
Eq. (7) is subject to the no-slip boundary condition on the
walls and zero velocity gradient at the axis of symmetry. At
each interface, the jump in shear stresses is balanced by the
interfacial tension forces. The analytical solution can easily
be found as

uðyÞ ¼
2rxd=loð1� jyj=dÞ if d=2 < jyj < d;

rxd=lo if jyj < d=2.

�
ð8Þ

By integrating the velocity across the channel, the total
mass flux is then given by

Qex ¼
3

4

rxd
2

lo

. ð9Þ
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Fig. 2. Resolution test for the validation problem in Fig. 1. Total mass
flux scaled by the exact mass flux versus grid resolution.

Fig. 3. Isotherms for selected frames from the computation of six drop interac
shown. The non-dimensional times (t*) are 0.25, 25, 62.5, 112.5. The non-d
property ratios are 0.5.
To demonstrate the accuracy of the numerical method, the
total mass flux computed using different spatial grid resolu-
tions is compared with the analytical solution given by Eq.
(9) when the flow becomes fully developed, i.e., it reaches a
steady state. Fig. 2 shows the computed mass flux normal-
ized by the analytical solution for different grid resolutions.
The computations are performed on a 1 · 1 rectangular do-
main and using various computational grids containing
16 · 16, 32 · 32, 64 · 64 and 128 · 128 grid points. It is
clearly seen in this figure that the computed mass flux
converges to the exact solution as the grid is refined,
demonstrating the accuracy of the method. Some more
validation tests for the present method can be found in
Nas [8].

3. Results and discussion

The computational domain is taken to be periodic in the
horizontal direction and bounded by rigid walls in the ver-
tical direction. The top wall is hot and the bottom wall is
cold, and initially the temperature varies linearly in the ver-
tical direction.

All the results presented here are obtained on uniform
Cartesian grids. In both two- and three-dimensional com-
putations, the top and bottom boundaries are treated as
no-slip walls at constant temperatures. Periodic boundary
conditions are used in other directions for the flow and
temperature fields. Initially, the drops are taken as infi-
nitely long circular cylinders and spheres in two- and
three-dimensional cases, respectively. The fluid is initially
stationary and the temperature increases linearly from the
cold bottom wall toward the hot top wall. The accuracy
of the method with respect to the grid convergence has
been shown by Nas and Tryggvason [9] and it has been
found that the drops deform very little and about 32
grid points in each direction per drop diameter are suffi-
cient to reduce the spatial error below 2%. It is therefore
tion. Time progresses from left to right and 50 equally spaced contours are
imensional parameters are Re = 5, Ma = 20, We = 0.0833 and material
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assumed that the same resolution is sufficient for many
drop simulations presented in this work. The details of
the grid convergence studies have been reported in Nas
and Tryggvason [9] and in Tryggvason et al. [12].

The flow evolution is controlled by the radius of the
initially spherical drop a, the interfacial tension r, the
viscosity l, the density q, the coefficient of heat capacity
cp, the coefficient of heat conduction k, and the tempera-
ture gradient in the ambient fluid far from the fluid particle
$T1. The interfacial tension is assumed to be a linearly
decreasing function of the temperature,

r ¼ ro þ rT ðT o � T Þ; ð10Þ
where T is the temperature and ro is the interfacial tension
at reference temperature To and the coefficient is defined
as

rT ¼ �
dr
dT
¼ constant. ð11Þ
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Fig. 4. The six two-dimensional equal size drop interaction. Drops marked 1–
center of mass of drop system. (a) Migration velocities versus time. (b) z compo
The average temperature distribution across the channel (solid line) and the in
The governing non-dimensional parameters are given by

Ma ¼ U ra
ao

; Re ¼ U ra
mo

; We ¼ qoaU 2
r

ro

;

q� ¼ qi

qo

; l� ¼ li

lo

; c�p ¼
cpi

cpo

; k� ¼ ki

ko

;

ð12Þ

where U r ¼ rT a
lo
jrT1j is the reference velocity, tr = a/Ur is

the reference time scale, ao ¼ ko=ðqocpo
Þ is the thermal dif-

fusivity and mo = lo/qo is the kinematic viscosity. Ma, Re

and We are the Marangoni, Reynolds and Weber numbers,
respectively. Note that the material properties of the drop
fluid are denoted by the subscript ‘‘i’’ and the properties
of the ambient fluid are denoted by the subscript ‘‘o’’.

The thermocapillary migration and interactions of
mono-dispersed drops in a cloud are first examined and
then the poly-dispersed drop systems are considered. It
is shown by Meyyapan et al. [6] and Meyyapan and
Subramanian [7] that the presence of planar surface
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reduces the migration velocity of a bubble in a creeping flow
regime when its distance to the wall is less than three drop
radii. Chen and Keh [2] confirmed the same results for the
case of drops. Considering the computational cost, the
drops are initially placed arbitrarily but about two to three
drop radii away from the lower wall in the present study and
the simulations are terminated before any drop gets closer
to the top wall more than two drop radii. This probably
introduces some wall effects in the present computational
results but these effects are expected to be small. Further-
more, the wall effects are also present in many applications.
3.1. Mono-dispersed drops

To investigate the interaction of many drops, the evolu-
tion of six drops is first computed. The computational
domain is 10a long in x-direction and extends to 20a in
z-direction and, is resolved by 128 · 256 grid points. The
non-dimensional numbers for this case are Re = 5, Ma =
20, We = 0.0833 while the material property ratios are set
to 0.5.

Fig. 3 shows the isotherms in the laboratory frame at
different time frames. It is seen from the plots that two
drops separate from the rest and move ahead, while the
others start lining up across the channel. Later on, the
two leading drops move side by side and migrate almost
independently from the other drops. Fig. 4 shows the
migration velocity, vertical positions of drop centroids,
the deformation of drops and the average temperature dis-
tribution at the time of the last frame together with the ini-
tial temperature distribution. Note that the deformation is
defined as
Fig. 5. Isotherms for selected frames from the simulation of 16 two-dimensio
bottom and 50 equally spaced contours are shown. The non-dimensional ti
parameters are Re = 5, Ma = 20, We = 0.0833 and material property ratios a
c ¼ 1� �
1þ � ; ð13Þ

where

� ¼ minor axis of the drop

major axis of the drop
. ð14Þ

Examining the velocity of each drop in Fig. 4(a), it is clear
that the velocity of the center of mass of the drop cloud
reaches a steady state, while each individual drop does
not. In particular, each drop in the group of four has oscil-
lating migration velocities. Also, the leading drops move
faster than the four drops left behind. Two faster drops
quickly separate from the rest and each group lines up
across the channel as seen in Fig. 4(b). Since the leading
two drops move apart horizontally, their deformation is
small at steady state compared with the other ones which
are squeezed across the channel as seen in Fig. 4(c). The
drops carry cold fluid with them upward and warmer fluid
flows back between them to conserve mass. Since the ther-
mal capacity of the drops is less than that of the outer fluid,
the net effect is to heat the region around and behind the
drops. As seen in Fig. 4(d), the temperature increases above
the linear temperature profile at the location of two leading
drops and increases even more across the bottom four
drops. Since the temperature of the bottom wall is fixed,
the temperature gradient in the bottom region must
increase, which is verified by the close spacing of the
isotherms shown in Fig. 3.

To investigate whether the layer formation suggested by
the simulations presented above is a prominent feature in
large drop clouds, simulations are performed using 16
equal size 2D drops placed in a 11.43a · 11.43a domain.
nal equal size drop interaction. Time progresses from left to right, top to
mes (t*) are 1.4, 64.3, 142.85, 214.3, 285.7, 428.6. The non-dimensional
re 0.5.
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Fig. 6. The 16 two-dimensional equal size drop interaction. (a) Migration
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time.
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The computational domain is resolved by 256 · 256 grid
points and the non-dimensional numbers are the same as
in the six-drop simulation case. Fig. 5 shows the isotherms
at different time frames. It can be seen from this figure that
the drops form two layers. Since the sides of the domain
are not occupied by drops, the hot ambient fluid flows
down in this region. Since drops are close to each other
in the top layer, the downward flow of ambient fluid is
decreased. As a result of this behavior, the drops in the
top layer move toward the sides of the domain and the first
layer opens up like an envelope. As the top layer moves,
the whole picture is nearly symmetric with respect to the
middle vertical line. The drops in the top layer carry the
cold fluid with them, forming a cold region between
the two layers. Later on, the top layer breaks up, allowing
the hot ambient fluid to flow down between the drops.
Similarly, the lower layer also breaks up into two nearly
horizontal layers due to the temperature gradient in the
cold region between the two layers. After the break up,
the hot ambient fluid flows down quickly in the middle
of the domain. This causes the fluid to heat up in that
region, changing the temperature gradient. By moving in
the direction of the temperature gradient, the drops change
direction toward the vertical middle symmetry line. The
leading drops form a nearly horizontal layer before hitting
the wall while the rest of the drops form another layer by
coming close together horizontally due to the temperature
gradient. This simulation suggests that while layers may
form, they will break up through instability waves many
times longer than the drop diameter, but eventually they
strive to form stable layers. To demonstrate the formation
of drop layers, the migration velocity and the vertical posi-
tion of each drop centroid are plotted in Fig. 6. The drops
in the top layer move faster than the drops in the lower
layer until feeling the influence of the top wall, i.e., t* is
about 350 as seen in Fig. 6(a). It is interesting to observe
that two drops which are initially in the top row have neg-
ative velocities during the period of approximately
t* = 100 and t* = 200. One of these drops later joins the
lower layer while the other accelerates and catches up with
the drops in the upper layer. The formation of two layer
structure can be seen more clearly from the evolution of
the vertical locations of the drop centroids as shown in
Fig. 6(b).

After two-dimensional simulations of drop clouds, fully
three-dimensional simulations are also performed. A three-
dimensional simulation with a resolution of 64 · 64 · 128
grid points is performed in a domain which extends 6.66
drop radii in x- and y-directions and twice as large in the
z-direction. The non-dimensional numbers are the same
as the two-dimensional simulations for 6 and 16 drop cases.
Nine equal size drops are placed arbitrarily but initially
close to the lower cold wall.

The migration of these drops toward the top hot wall
at different time frames is shown in Fig. 7(a). Since the
visualization of the isotherms is not as easy as it is in
two-dimensions, the isotherms are shown over the middle
cross-sectional plane. The isotherms are plotted in the
middle y � z plane in Fig. 7(b). It is seen from the iso-
therms that two drops form a layer by coming side by side
while migrating toward the top wall. Since the isotherms on
a cross-sectional plane is plotted, only a portion of this
layer formation is seen, which actually involves more than
two drops. The wake of the drops perturbs the temperature
field only slightly. The isotherms wrap around the drops
showing the level of convective transport of energy. Ini-
tially, the drops are close to each other and as they move
toward the hot wall, one of the drops separates and moves
faster than the other two drops which migrate almost side
by side. The migration velocities and the vertical locations
of drop centroids are plotted in Fig. 8. It can be seen more
clearly from these figures that one of the nine drops sepa-
rates from the other drops and the others form a layer
similar to what is observed in the two-dimensional



Fig. 7. A fully three-dimensional simulation of the interaction of nine equal size drops (top plots) and temperature contours for selected time frames with
50 equally spaced contours shown in the middle plane of the computational domain in x-direction (bottom plots). Time progresses from left to right. The
non-dimensional times (t*) are 0.66, 40, 86.66. Computational domain is (x/a,y/a,z/a) = (6.66,6.66,13.33). The non-dimensional numbers are Re = 5,
Ma = 20, We = 0.0833 and the material property ratios are 0.5.
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simulations. The number of drops is just sufficient to form
one nearly horizontal layer. The migration velocities of the
drops clearly indicate that one of the drops, which was
originally ahead of others, separates easily from the rest.
These fully three-dimensional simulations confirm the for-
mation of drop layers observed in the two-dimensional
simulations.

3.2. Poly-dispersed drops

Drops of exactly the same size are unlikely to be present
in real systems. Here, the interaction between drops with
different sizes is explored by both two- and three-dimen-
sional simulations.
The interaction among six drops is first examined. Three
of the six drops are small and the other three are large. The
ratio of the small drop radius to the large drop radius is
k = 3/5. An average drop radius, av, is defined by taking
an arithmetic average of the radius of the drops. The aver-
age reference velocity, Urv, is defined based on this average
drop radius. The non-dimensional numbers for the big
drops are the same as for the six-drop simulation in the
mono-dispersed case, i.e., Re = 5, Ma = 20, We = 0.0833
and the material property ratios are 0.5. The resolution is
128 · 256 grid points in a x/av = 10, z/av = 20 computa-
tional domain.

The isotherms from this simulation at different time
frames are shown in Fig. 9. It is seen that the drops come
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dimensional numbers based on dimensions of large drops are Re = 5, Ma = 20, We = 0.0833 and the material property ratios are 0.5. The ratio of drop
radii is k = 3/5.
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Fig. 10. The six two-dimensional unequal size drop interaction. Drops
marked 1–6 from left to right in the domain and ‘‘com’’ denotes the
velocity of the center of mass of the drop system. (a) Migration velocities
versus time. (b) z component of the centroid of drops versus time.
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together and form a nearly horizontal layer at early times.
Since the migration velocity of an isolated drop is propor-
tional to the drop radius, it should be expected that small
drops move with a lower velocity than big ones. This, how-
ever, is only true when the drops are isolated. As seen in
these figures, the small drops move very close to the big
ones and almost ‘‘stick’’ to the sides of the big drops. It
is seen that two big drops collide with the third big one
which is ahead of the others. This causes the third drop
to separate from the other drops and reach the upper wall
well ahead of the others. Although the small drops migrate
to the side of the big ones, they together form a nearly hor-
izontal layer across the channel. The reason that the small
drops also migrate as fast as the big drops is due to the fact
that the small drops are caught in the wake of the large
drops. Due to this behavior, the thermal gradient across
the small drops is high so their velocities are large. The
migration velocity and the vertical location of centroid of
each drop are plotted in Fig. 10. The formation of the drop
layer can be clearly seen from these figures. The results here
are similar to the six-drop simulation in the mono-dis-
persed case in which once drops fill the channel horizon-
tally, the other drops form a second layer.

As for the mono-dispersed case, a larger system of
unequal size drops is also simulated. For this purpose,
16 drops are placed in a domain which extends 13.33 aver-
age drop radii in both directions. The number of small
drops is selected to be equal to the number of big drops.
The resolution is also 256 · 256 grid points for this case.
Fig. 11. Isotherms for selected frames from the simulation of 16 two-dimension
bottom and 50 equally spaced contours are shown. The non-dimensional tim
(x/av,z/av) = (13.33,13.33). The non-dimensional numbers based on dimensi
property ratios are 0.5. The ratio of drop radii is k = 5/7.
The ratio of small drop radius to large drop radius is
k = 5/7. All the other non-dimensional numbers for the
big drops are the same as for the previous computations
of the 16 mono-dispersed drop case. The interaction of
these drops is shown in Fig. 11 where both the drops
and the isotherms are illustrated at different time frames.
The figure indicates a similar behavior for the ploy-dis-
persed system to the mono-dispersed case plotted in
Fig. 5. As can be seen in the top frames, the drops accel-
erate quickly and initially move close to each other. Since
the sides of the domain are not occupied, initially, the hot
ambient fluid flows down there, rather than between the
drops. This results in the thermal gradient as seen in
Fig. 11. Due to this thermal gradient, some of the leading
drops move toward the sides of the domain. As these
drops separate from the others, the rest of the drops form
a layer, as seen in the bottom frames of the same figure.
Because of different drop sizes the layer is not as uniform
as for the mono-dispersed case. Nevertheless, this layer
across the channel persists until the end of the simulation.
The leading drops slow down when they get close to the
upper wall and, since the others move faster, eventually
all the leading drops come to nearly the same horizontal
level before hitting the top wall. The lower layer continues
to migrate during this period. The migration velocities
plotted in Fig. 12 together with the vertical locations of
the drop centroids also show this behavior. The formation
of drop layers, until the channel is filled horizontally, is
quite similar to the mono-dispersed case.
al unequal size drop interaction. Time progresses from left to right, top to
es (t*) are 4, 64.7, 89, 137.6, 161.9, 202.4. The computational domain is
ons of large drops are Re = 5, Ma = 20, We = 0.0833 and the material
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Finally, in order to further verify drop layer formation
for real poly-dispersed systems, a fully three-dimensional
simulation of unequal size drops is performed. The size
of the computational domain is x/av = 8, y/av = 8, and
z/av = 16, and it is resolved by a 64 · 64 · 128 grid. The
ratio of drop radii is k = 2/3. Four big and five small drops
are arbitrarily placed close to the lower wall. The non-
dimensional numbers based on the dimensions of big drops
are the same as in the previous cases. The average drop
radius and the average reference velocity are used to scale
the quantities computed in this simulation. Since the migra-
tion velocity is proportional to the drop radius, the larger
drops should migrate faster than the smaller drops and it
is not surprising that the larger drops should overtake
the rest. This is clearly seen in Fig. 13. The migration veloc-
ity of each drop as well as the scaled distance from the cen-
troid of the drops to the lower wall are shown in Fig. 13(a)
and (b). In these figures, the drops marked by 2, 4, 6, and 8
correspond to the big drops. The migration velocity of each
drop clearly indicates that the larger drops have higher
velocities and their migration velocities are similar. The
smaller drops also have migration velocities close to each
other but each group has a different velocity. Of course,
the consequence of this is the two layer formation as
observed before. This result confirms that the drop layer
formation seen in two-dimensional simulations is also a
prominent feature in three dimensional poly-dispersed
droplet flows. But, in contrast to the two-dimensional sim-
ulations of poly-dispersed system, where the drops of dif-
ferent size form a nearly horizontal layer by migrating
close to each other, it is found in three-dimensional
simulation of a poly-dispersed system that drops with dif-
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ferent sizes form different layers. Each layer moves with a
different velocity and the larger the drops, the higher the
migration velocity of each layer. This results in a feature
that the layer of large drops move as a top layer and the
small drops move behind as a lower layer. This is a distinct
behavior of three-dimensional simulations of poly-dis-
persed systems.

4. Conclusions

The behavior of a drop cloud in thermocapillary flows
under zero gravity condition is examined both for mono-dis-
persed and poly-dispersed cases. The numerical simulations
of mono-dispersed systems show that the drops form nearly
horizontal layers. As soon as the drops form one layer that
fills the channel horizontally, the rest of the drops form
another layer. Although it is seen in the two dimensional
16-drop simulation that this layer may break up by instabil-
ity waves, the layer is eventually regenerated. Three-dimen-
sional simulations confirm the formation of drop layers and
the simulations of poly-dispersed drop systems show the
same behavior. In contrast to two-dimensional simulations
of poly-dispersed system, where drops of different size form
a horizontal layer, the three-dimensional simulation of a
poly-dispersed system shows that drops with different sizes
form different layers. Each layer moves with a different
velocity and the larger the drops, the higher the migration
velocity of each layer. This results in a layer of large drops
that moves ahead of a layer of small drops.
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